

Applicability of wastewater-based epidemiology for respiratory diseases beyond COVID-19

Kata Farkas, Rachel Williams, Davey L. Jones, Bangor University

Gareth Cross, Welsh Government

William Perry, Andrew J. Weightman, Cardiff University

WBE – Welsh programme

- Since September 2020
- 47 treatment sites raw sewage (5/week)
- 10 hospitals (4/week)
- Seven viral targets

WBE – Welsh programme

Methodology

- 0. Basic chemical analysis
- 1. PEG precipitation
- 2. NulciSense RNA/DNA extraction
- 3. qPCR/Sequencing
- 4. Sample archive

Farkas et al, 2022 https://doi.org/10.1128/spectrum.01102-22
Kevill et al, 2022 https://doi.org/10.1016/j.scitotenv.2021.151916
Farkas et al, 2020 https://doi.org/10.3390/mps4010017

WBE for SARS-CoV-2

Figure 47 - ONS CIS vs Wastewater National Mean (SARS-CoV-2 gc/day per 100k)

Weekly reports:

https://www.gov.wales/sites/default/files/publications/2023-05/wastewater-monitoring-11-may-2023.pdf

WBE feasibility for influenza and RSV

- Virus detection
 - qPCR
 - Assay needs regular updating due to high mutation rates → ← assay reproducibility
 - Inclusion of flu vaccine?
 - Inclusion of animal strains?
 - Sequencing
 - RVOP panel, Illumina
 - CleanPlex Respiratory Virus Research Panel, Paragon Genomics
 - Amplicon sequencing

WBE feasibility for influenza

Virus decay rates in wastewater – spiking experiment

Influenza virus is stable in wastewater for one day, however, longer storage may affect viral recovery in some samples.

WBE for influenza and RSV in Wales

WBE for influenza A virus

WBE for influenza A virus

Mark Drakesmith

Communicable Disease Surveillance Centre, Public Health Wales

WBE for influenza B virus

Figure 6. Flu subtypes based on specimens submitted for virological testing by sentinel GPs and community pharmacies, hospital patients, and non-sentinel GPs, as of 07/05/2023 by week of sample collection, Week 40 2022 to Week 18 2023.

GIG CYMRU Cymru Public Health Wales

Wastewater data

WBE for RSV

WBE for RSV

Mark Drakesmith

Communicable Disease Surveillance Centre, Public Health Wales

Sequence analysis - RVOP

RSV
Influenza A virus
H5N1
Influenza B virus

Hospital wastewater

Dr Rachel Williams Poster #

Conclusions

- The most relevant respiratory viruses may be monitored in municipal wastewater for WBE applications
- Timely sampling and sample process should be established
- Careful assay development and constant update are required for sensitive quantitative data
- Respiratory virus sequencing approaches to be optimised

Further work

ONE HEALTH BANGOR

- Inclusion of other clinically relevant viruses and other pathogens (AMR, Cryptosporidium, etc.)
- Application of metaviromes to explore yet unknown viruses
- One Health approach: effect of wastewater contamination on animals and the environment

Surface water

Adriaenssens et al (2018) *mSystems*, doi:10.1128/mSystems.00025-18

Acknowledgement

Poster presentation: Dr Alvaro Delgado Dr Jessica Kevill

Dr Rachel Williams

Pls:

Prof Davey Jones, Bangor University
Prof Andrew Weightman, Cardiff University

